Limit-Cycle Behaviour of Thermally-Unstable Accretion Flows onto Black Holes
نویسندگان
چکیده
Nonlinear time-dependent calculations are being carried out in order to study the evolution of vertically-integrated models of non-selfgravitating, transonic accretion discs around black holes. In this paper we present results from a new calculation for a high-α model similar to one studied previously by Honma, Matsumoto & Kato who found evidence for limit-cycle behaviour connected with thermal instability. Our results are in substantial agreement with theirs but, in our calculation, the disc material does not always remain completely optically thick and we include a suitable treatment for this. We followed the evolution for several cycles and determined the period of the cycle as being about 780 seconds. Advective cooling is dominant in the region just behind the outward-moving peak of surface density. The behaviour of this model is significantly different from what we saw earlier for low-α models (which we discussed in a previous paper) and we contrast and compare the two situations.
منابع مشابه
Non-linear evolution of thermally unstable slim accretion discs with a diffusive form of viscosity
We are carrying out a programme of non-linear time-dependent numerical calculations to study the evolution of the thermal instability driven by radiation pressure in transonic accretion discs around black holes. In our previous studies we first investigated the original version of the slim-disc model with low viscosity (α = 0.001) for a stellar-mass (10M⊙) black hole, comparing the behaviour se...
متن کاملCalculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.
In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...
متن کاملNon-axisymmetric instabilities in shocked adiabatic accretion flows
We investigate the linear stability of a shocked accretion flow onto a black hole in the adiabatic limit. Our linear analyses and numerical calculations show that, despite the post-shock deceleration, the shock is generally unstable to non-axisymmetric perturbations. The simulation results of Molteni, Tóth & Kuznetsov can be well explained by our linear eigenmodes. The mechanism of this instabi...
متن کاملNumerical models of rotating accretion flows around black holes
Numerical, two-dimensional, time-dependent hydrodynamical models of geometrically thick accretion discs around black holes are presented. Accretion flows with non-effective radiation cooling (ADAFs) can be both convectively stable or unstable depending on the value of the viscosity parameter α. The high viscosity flows (α ≃ 1) are stable and have a strong equatorial inflow and bipolar outflows....
متن کاملIonization, Magneto-rotational and Gravitational Instabilities in Thin Accretion Disks around Supermassive Black Holes
We consider the combined role of the thermal ionization, magneto-rotational and gravitational instabilities in thin accretion disks around supermassive black holes. We find that in the portions of the disk unstable to the ionization instability, the gas remains well coupled to the magnetic field even on the cold, neutral branch of the thermal limit cycle. This suggests that the ionization insta...
متن کامل